Rethinking Biased Estimation: Improving Maximum Likelihood and the Cramér–Rao Bound

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rethinking Biased Estimation: Improving Maximum Likelihood and the Cramér-Rao Bound

One of the prime goals of statistical estimation theory is the development of performance bounds when estimating parameters of interest in a given model, as well as constructing estimators that achieve these limits. When the parameters to be estimated are deterministic, a popular approach is to bound the mean-squared error (MSE) achievable within the class of unbiased estimators. Although it is...

متن کامل

Uniformly Improving the Cramér-Rao Bound and Maximum-Likelihood Estimation

An important aspect of estimation theory is characterizing the best achievable performance in a given estimation problem, as well as determining estimators that achieve the optimal performance. The traditional Cramér-Rao type bounds provide benchmarks on the variance of any estimator of a deterministic parameter vector under suitable regularity conditions, while requiring a-priori specification...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

Maximum Likelihood Estimation and Likelihood-ratio Tests

The method of maximum likelihood (ML), introduced by Fisher (1921), is widely used in human and quantitative genetics and we draw upon this approach throughout the book, especially in Chapters 13–16 (mixture distributions) and 26–27 (variance component estimation). Weir (1996) gives a useful introduction with genetic applications, while Kendall and Stuart (1979) and Edwards (1992) provide more ...

متن کامل

Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model

Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Foundations and Trends® in Signal Processing

سال: 2007

ISSN: 1932-8346,1932-8354

DOI: 10.1561/2000000008